APPENDIX

Notation and Definitions

Consider a longitudinal study of n subjects, with each subject’s observations assumed to be inde-
pendent and identically distributed. Time is indexed by k, for £ = 1,2,3,--- ,10. V is a vector
for baseline covariates. A;, is a measure of PM, 5 levels participants were exposed to at time k. Ly,
is a health status variable, here a continuous comprehensive risk score variable based on health in-
surance claims. Y} is defined as continuous outcome of interest (here height standardized FEV; or
FVC in separate analyses) at time k. C}, is an indicator for censoring due to termination of employ-
ment or death at time k. The order assumed at each time k is Vj, Ly, Ax,Ck, Yi. The relationships
between exposure A, time-varying covariate L, censoring C' and lung function parameters Y are
also depicted in a directed acyclic graph in Figure 1 of the main manuscript. Histories for time

varying covariates are denoted with overbars such that exposure history through time % is denoted

by Ap = {Ay, Ay, As, -+, Ay}

The parametric g-formula

The expected outcome F[Y}] for lung function parameters FEV; and FVC at time £ = 10 is given
below as a function of the joint density of the outcome conditional on exposures and covariates

and the joint distribution of exposure and covariates (Taubman et al. 2009).
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Under a simulated interventions where Ay, in intervened on (in our case deterministically) the above

quantity reduces to:
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Similarly in the sensitivity analyses for simulated interventions where no participant is assumed to

be censored:
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This quantity is the extension of standardization for time-varying exposures (Taubman et al. 2009).
The expression above is a sum over all possible covariate and exposure histories, which cannot
be computed non-parametrically in high dimensional data such as the dataset in question. We
instead rely on the use of parametric models and a Monte Carlo simulation to approximate the

g-formula.

The parametric models give us estimates for the individual probabilities in the above expression.
Models were fit pooled on the person-year level. For each intervention considered, exposure and
covariate histories are generated for a Monte Carlo sample based on the observed distribution of
baseline covariates, and using the predicted probabilities and densities from the parametric models
fitted to simulate values over time. The expectation for the outcome at time £ is then estimated in

each simulated dataset.
The process is performed in a SAS macro in the following steps:
Parametric models

We fit parametric models to estimate the above probabilities and densities. Baseline covariates V'
were chosen a priori and entered in all models as follows: cubic polynomials for age and calendar
year with user defined knots, indicator variables for facility type (smelter, fabrication or refinery),
facility lovation (8 different locations), job grade (above or blow median pay), non-white race,

smoking status (ever, never or missing) and a continuous variable for cumulative PMs 5 exposure



accrued prior to beginning of follow up. The degree of paramerization and knot placement for
the age variable was varied and ultimately chosen based on model fit. This vector function is

collectively portrayed as ¢; (v) in the following models.

The parametric models fit were as follows:

a. A linear model for the level of annual daily average PMs 5 exposure at time k&,

E[AV = v, Ly = Iy, Ap_1 = g1, Cr1 = 0] = Bo + 8191 (v) + Bog2(lx) + Bags(an_1), where j3; is a vec-
tor of parameter coefficients for all baseline covariates as listed above, (3, is a vector of parameter
coefficients for the terms of a function of risk score history g»(l}), specifically a cubic spline term
for risk score at time k. Finally Bé is a vector of parameter coefficients for the terms of a function
of PMy 5 exposure history gs(ay_1), specifically cubic spline term for PMs 5 exposure levels at

time k — 1.

b. A linear model for the level of risk score at time k,

E(Ly = Uk)|V =v,Ly—1 = l—1, A1 = a@p_1, Cy—1 = 0) = 8o + 6,91 (v) + 0592(Ix—1) + d395(G—1), wWhere
8, is a vector of parameter coefficients for all baseline covariates, and d, is a vector of parameter
coefficients for the terms of a function of risk score history g,(I;x_1), specifically a cubic spline
term for risk score at time & — 1, and (5; is a vector of parameter coefficients for the terms of a
function of PM, 5 exposure history gs(ay_1), specifically a cubic spline term for PMs 5 exposure

levels at time k — 1.

c. A logistic model for the probability of censoring at time £,

logit(Cy|V = v, Ay = g, Ly, = Iy, Crey = 0) = 0y + 0,91 (v) + 0595 (I1) + O395(ax), Where 6] is a vector of
parameter coefficients for all baseline covariates, 0'2 is a vector of parameter coefficients for a
function of location history gg(fk) as in (a), 9'3 is a vector of parameter coefficients for a function
of exposure history gs(ay ), specifically a cubic spline term, for the exposure levels at time k plus

a cubic spline for cumulative PM; 5 exposure up to time k — 1.

d. Finally, a linear model for height standardized FEV; or FVC at time £,

E(Yi|V = v, Ay = ag, L = I, Cr, = 0) = g + 0,91 (0) + g (ls) + 13gs(ax), where ¢, is a vector of pa-
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rameter coefficients for all baseline covariates, and 1, and 15, are vectors of parameter coefficients

for the terms of risk score, and exposure histories respectively, as described in (c).
Simulation

We next draw a Monte Carlo sample (N=50,000). Values for baseline covariates V' and baseline
values for exposure and work status are set as observed at time £ = 1. By definition the following

is also true: Cy—1 = 0.

Under the natural course (no intervention), for all £ > 1, A, Lg, C) and Y}, are predicted using
the parameters from the fitted models described above and the simulated values of all covariate
and exposure histories up to that age. Values for linear terms (in this case the exposure term Ay,
risk score L and outcome Y}), are determined using the model predicted values plus a random
error term, while values for discrete variables (here censoring C}) are determined using the model
predicted probability and a randomly drawn uniform value. Values of one are assigned if the

predicted probability is below this value and zero otherwise.
Interventions

Under an intervention setting a deterministic value for the exposure, the values of A are set ac-
cording to the intervention defined value. Under an intervention setting an exposure limit, the
values of A, are intervened on if the model based simulated value is above the theoretical limit by
replacing the predicted exposure with the value of the theoretical limit. The simulation continues
using the intervened values for the prediction of subsequent exposure and covariate values. The
simulation continues until time k& = 10 or until (', is simulated to be 1. (), is set to zero at all times
in the sensitivity analyses assuming no one is censored, in which case the simulation continues to

time k = 10 for everyone.

The estimated outcome is averaged over the simulated population, summed over all covariate histo-
ries and weighted by the frequency of covariate histories, giving the g-formula estimate described

above. Differences in height standardized FEV; or FVC are estimated for each intervention by



comparing the outcome under each interventions to the outcome under no intervention (natural

course).
Confidence Intervals

For measures of stability we construct 95% Confidence Intervals (CI) by repeating the entire pro-
cess in 200 bootstraps (sampled from the observed data with replacement). Each bootstrapped
sample was of size=6485. We use the standard deviation of the bootstrapped difference estimates

as an estimate of the standard error to construct ClIs.



